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ABSTRACT

A new solution class extending to games with non-topological product set strategies and

multiple payoffs to players is developed without point-to-set mappings or quasi-variational inequalities.

Some properties are developed and an illustrative example comparison to existing notions in re

Pareto efficiency and Generalized Nash equilibria.
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Cone Extremal Solutions of Multi-Payoff Games
with Cross-Constrained Strategy Sets

A. Charnes
Z. M. Huang

J. J. Rousseau
0. L. Wei

I. Introduction

In classical game-theoretic models the strategy set is the topological product of the

strategy sets of the individual players. Such models are inadequate for many purposes in

economics (e.g., policy analysis for regulatory agencies) and elsewhere since they fail to take

explicit account of the interactions between, and constraints on, the players' strategies, and/or

the multiple objectives involved.

kExtensions of classical games to include these considerations can be achieved by the

new "dominance cones" method and class of solutions of Charnes, Cooper, Wei and Huang

(1987c), wherein the idea of nondominated equilibrium points was initiated and discussed.

Nondominated efficient solutions in normed vector spaces were studied by Charnes, Cooper,

Wei and Huang (1987b).

In Section 2 of the present paper we introduce a new concept of "T-nondominated

efficiency" for multi-payoff n-person games with Interacting strategy sets (see Dubey [1986] for

the single payoff non-interacting case), where T denotes a subset of the complete set of

players. Our notion of T-nondominated efficient solutions subsumes generalizations of both

non-dominated equilibrium points (when T consists of single elements ) and nondominated

efficient solutions (when T is the complete set of players) as special cases. The T-nondominated

efficient solutions, as we shall show, covers the spectrum from generalizations of Nash equilibria

to generalizations of Pareto efficiency or optimality, without requiring point-to-set mappings for

their specification.

Some essenti3l properties of T-nondominated efficient solutions are given in Section 3 in

the form of several theorems where we also examine the special case of nondominated

equilibrium points. To date (see Harker [19861), the chief generalizations of the Nash equilibrium

notion for games with interactive strategy sets have been via variational inequality or quasi-

variational inequality methods. Harker (1986) gives a two-player example in which only one

general Nash equilibrium can be found using the variational inequality method. In cnntrast, in

Section 4, our T-nondominated efficient solution notion enables us to determine by simple
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calculation all the generalized Nash equilibrium points for this example, and we further show that

none of them is Pareto-efficient.

We then determine the locus of nondominated (Pareto) efficient solutions for this

example and contrast them with the nondominated (Nash) equilibrium points. In our concluding

remarks we suggest a possible role for regulatory agencies in achieving some reconciliation

between the two solution notions in actual cases of policy analysis.

2. Cone Convexity and T-Nondominated Efficiency

In this section we review some relevant results regarding cones and their polar cones for

later use in our development and introduce a new concept of "T-Nondominated Efficiency" for

multi-payoff interactive n-person games.

A set S is convex if xj, x2 r S implies that X x + (1- X) x2 r S for all 09 XS: 1. A set

S is a cone if x e S and X > 0 imply that X x e S. S is a convex cone if S is a cone and is convex.

Thus, S is a convex cone if and only if x,, x. r S and X1, X2 0 imply that X, x + A x2 e S.

For an arbitrary set S in Em, leti e S ', where " denotes the closure of the set S.

Denote the "tangency cone" of S at R by T ( S,i ) where T ( S, j {h r Em : there exists a

sequence {x k ) and a sequence (Xk ) such that h - ir %I, (xkX) ,withxk r S, Xk>0, and

M kUrm xk -, }

Further denote the (ngatj polar cone of S by S" where S" - { y e Em : x t y s 0 for all

x e S) and the superscript "t" denotes transpose. A cone A in Em is said to be acute if there

exists anopen haf-space H - {x Em: atx>0,a*0) such that A cH ( 0).

The following lemma's proof may be found in [1], [21, [9], and [10].

Lemma 2.1: Let A and Al be cones in Em .

(i) if A cAthen A* D Al*,

(U) Int A* 0 if and only if A is acute.
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(ii) When A is acute,

Int A*= {ye Em: xty<0 forallx c-,x 0} and

An (-A) = (0)

(iv) If A is a convex cone then (A*)* = A

Definition 2.1. Let S be a convex set in Em and A be a convex cone in En. A real-

valued vector function G: S -+ En is called "A -concave on S " if

G (X x1 + (1-X) x2 ) - (.G (xt) + (1-X) G (x2)) A

forall x1 , x2 e Sand Xe (0,1).

Definition 2.2: Let S be a convex set in Em and A be a convex cone in En . A real-

valued vector function G:S -- En is called "A -quasiconcave on S* if

G(.xl+ (1-%) x2 ) -M in {G (xl) , G(x 2 )}e A

for all x1 , x2 eSand X e (0,1).

where

Min (G(xl),G (X2)} ) m( 1 x) 1 x)

min (gn(xl), gn(x 2 )

Lemma 2.2: Let S be a convex set in Em and A = E+. If G. S -E n is A -quasi-

concave on S, then the set

S {x r S:G(x)e cx A) is convex for every a e En

Proof: LetGbe A-quasiconcave onS. Forany cze En ,let xI ,X2 6 Sa and

Xe (0,1). Since

G(kx1 + (1-),) x2 ) -M in {G (xl) , G(x 2 )}e A
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plus

G(xiE a+A, I = 1.2 implies Min {G(xl), G(x)) e a+A

we have

G(Xx t + (1-X) x2 ) r Min {G (xl) , G(x 2 )}+ A. -(X+A.

Thus, X x1 + (1- X) x2 E Sa, so that Sa is convex.

Q.E.D.

Lemma 2.3: Let S be a convex set in Em and A be a convex cone in En G: S -- En . If

for any a e En , the set

Sa x e S: G(x) ea+A)

is convex set, then G is A -quasiconcave.

Proof: Foranyx 1 , x2 r= S and X.r= (0,1),let a- Min{G(x),G(x2 )}. Since Sa is

convex and x1, X2 6 Sai, we have

G (Xxl + (I- %) x2 ) e a+A = M j Gtxl),G(x2)) +A,

that is,

G(Xxl+ (1-X) x2 ) -M in {G(xl) , G(x2)}e A

Q.E.D.
n

Lemma 2.4: Let S be a convex set in En, A D E, be a convex cone, and G: S -- En

be a real-valued vector function. If G is A -concave on S then G is A -quasiconcave on S.

Proof: Let Q be A-concave on S. Then, for any x1, x2 e S and X r (0,1), we have

G (Xx1+ (1-X) x2) - (XG (x1) + (1- X) G(x 2) ) e A.

Since XG(x 1 ) +(1- X)G (x2 ) 2 Min {G(x),G(x 2)}
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we have

G (,x1+ (1-X) x2) - Min (G(xl), G(x 2 )}

e G (xl) +(1-.)G(x2 ) -Min {G(xl), G(x2) } + AcA

Q.E.D.

We now give three lemmas, originally stated and proved in [1] and [21. For further

properties of cones the reader is referred to [7], [8] and [10].

Lemma 2.5: Let A be a closed convex cone in En, S be a convex set in Em , and

G S -* En be differentiable in an open set which contains S. If G is A --concave on S, then for

every x1 ,x 2 G Swe have

G(x)+VxG(x1 )(x 2 -x1 ) E G(x2) .

Lemma 2.6: Let S be a convex set in Em and A be a convex cone in En with

G S -t En . If G is A--concave on S, then for every p e (-A*) we have that pt G is concave

on S.

Lemma 2.7: Let S be a convex set in Em and A be a closed convex cone in En with

G S -+ En . If, for arbitrary pG A*, pt G is concave on S, then G is (-A) -concave on S.

We now state precisely what we mean by a multi-payoff, interactive n-person game, and

then present the notion of T-nondominated efficiency for such games.

Definition 2.3: A multi-payoff, interactive ("cross-constrained") n-person game in

normal form is given by a set of players N - (1,2, . . , n}; n nonempty sets Si c Ek( i ), the "a priori"

strategy sets of the players; a real-valued vector function G - (gl .... gm): S1 x... x Sn -+ Em ,
I I

the interactive ("cross') constraint function; n-real-valued vector functions Ui = (u 1' .... u I)

S1 x... x Sn - Efthe vector payoff functions of the players; a convex cone K in Em , the

constraint cone; a convex cone W in El, the dominance cone; and X (K) -{ x = ( x1 ..... xn )

G (x) E K, xi e Si, i e N}, the interactive strategy set. Such a game will be denoted by

r = {X(K), W; ul, ..., un}

5

L -bm m m ---m m m mmm ~m



In a multi-payoff, interactive n--person game r, for any x xi , i e N) E S = S1 x ... x Sn,

T c N, and y - { yi: i e T } e X S', let (x I y) denote the element of S obtained from x by replacing
i eT

xi by yi for each i e T. The concept of T-nondominated efficiency for such games, r, is

summarized in the following definition.

Definition 2.4: A point j EX(K)iscalleda

(1) "T-nondominated efficient solution" of r associated with W if there does not

exist any point y • X S', with ( jy) e X(K) such thatleT

ui(x) eui(I jy) + W foral i e T

uJ(x) * uJ(i IY) forsome je T

(2) "Nondominated equilibrium point" of r associated with W if it is a

T-nondominated efficient solution for all subsets T consisting of one element.

(3) "Nondominated efficient solution" of r associated with W if it is a

T-nondominated efficient solution for T - N.

Evidently our nondominated equilibrium point of r associated with W is a generalization

of the Nash equilibrium point to the "games" with interacting strategy sets and vector payoff

functions which were initiated and discussed in Chames, Cooper, Wei and Huang (3]. The

nondominated efficient solution of r associated with W is the corresponding generalization of

vector or Pareto efficiency (or optimality). The T-nondominated efficient solution thus runs the

gAmut from Nash equilibrium generalizations to Pareto optimality generalizations, and no

intervening point to set mappings are needed for their specification.

In (3] Charnes, Cooper, Wei and Huang introduced dominance cones for the study of

multi-payoff, interactive n-person games, and explored the notion of a nondominated

equilibrium point of r associated with the dominance cone W.

The focus of the present paper is on T-nondominated efficient solutions and

nondominated efficient solutions and nondominated efficient solutions of r associated with W

where we begin, in the following section, to examine some essential properties of such solutions.

We conclude this section with the following two definitions.
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Def inition 2.5: r - {X(K), W; U1 ,.  un is called a (T-W-K) -quasiconcave game
if the following four conditions hold for all i e T:

(i) Si is a convex set in Ek(i)

(ii u(X . xi, . . ., xn ) is (-W) -quasiconcave with respect to (xi :j eT I

Sfor fixed x1k:k eN-Tl r X S
ei~TskGN.T

(i) ui (x1 , . i , .xn) is continuous on XSj
le N

(iv) G (xi . X!,.xn) is continuous and K-concave on X Sj
je N

Definition 2.6: r X(I ), W; ul, . un) is called a (T-W-K) - concave

game If conditions (i), (iii) and (iv) of Definition 2.5 hold for all i e T and in addition, for all i e T

.iX1 .,xi, ...xn) is (-W) -concave with respect to (xi e 1T) e X S for fixed {xk :k E N -T)
jET

kX XS
kGN-T

3. Some Essential Properties of T-Nondomlnated Efficient Solutions.

Conditions for the existence of T-nondominated efficient solutions, and further
properties of these solutions, are presented here in the form of several theorems.

Theorem 3.1: For the game r = {X (K) , W; ul.. . un I , let Wbe acute and Sibe
compact for all i e T c N. Then there exists at least one 3j e X (K) which is a T-nondominated

efficient solution of r associated with W.

Proof: Since W is acute, lnt W * 0. Let pe 4Ent W and Up (x): P't Xu N)
leT

Consider the following system

7



Since X (K) is compact, (P) has at least one optimal solution, say 7 To show that j is

a T-nondominated efficient solution of r associated with W, assume to the contrary that there

exists y EX S with (7 Iy) e X(K) such that
iET

ui ( ) ' ui (xY) +W for all ieT

uJ() ul ( y)+W for some je T.

Then

ptui(x) s ptui (- lY) and ptj-) < puJi-x lY)

Hence

ptlui x , pt yui y

ieT iCT

That isUp () < Up ( - y),

which contradicts j is an optimal solution of (P).

0.E.D.

In the following theorem we denote the Fr~chet gradient of the interactive constraint

funtion G (x) with respect to x:j E T})E XS j by
I*T

VTgl (X)

VT G(x) =
VTg' (X)

where

VT gi (x) =( gi (x) / a x j , T) is a row vector.

8



Theorem 3.2:

Let r be a (T-W-K) -concave game with W acute. If - r X (K) satisfies

;P!VTU(X)+YVTGx(x) = (

= 0 (3.2)

for some (Pi : Pie Int W *, i E T) and y e (-K*), then j is a T-nondominated efficient

solution of r associated with W.

Proof: Assume to the contrary that is not a T-nondominated efficient solution of r

associated with W. Then there exists Y e A S' with (X I y) e X (K) such that
ieT

ui (x )e ui (x-Y-) + Wforall ieT

uJ )-lx ( -IF ) + W forsome je T,

and hence

,T..p u T <, rll- (3.3)

Since, for all i e T, Li and G are (-W) -concave and K-concave, respectively, with respect

to{ xi i E T , then by Lemma 2.6 P u and Y G are concave with respect to ( x i i T}.

Hence

piut '(-i ) : pi u (x) + pi VT u(x- _ foranl i T

Gl(- ly} G(-) + ytVTG( -T)(i-WT = Vt VTGrl (y- -XV

and

pi P V u'nx ry - ,,4 - - ytVr G (xl-) -X j

iGT

<-9 G( ly 0

where

T (i T).

9



Then

ieT ieT ieT

iET

which contradicts (3.3).
Q.E.D.

Assumption (A): For any E X (K), y EX S' and ^ E X S' , let
ieT icT

Uic = Min {ui ( (J-) 19) [). ,rU-Mind (-L ), U = MinUL (iJq)

jeT jeT

then ?, (Uc-Ui)+(1-?)(Uc-UIc)eW foreach ?.e [0, 11.

Lemma 3.1 : Let r be a (T-W-K) -quasiconcave game and W o El. be acute. If 7 E X (K) is a

T-nondominated efficient solution of r associated with W and Assumption (A) holds, then there

exist pi e W*, i e T, not all zero, such that

Y_ pu'(R)> Y_ u'(iy) foralyE XS with(itly)e X(K)
ij T ieT ieT

Proof: Consider

A =(zi: iET) : there exists some 7 e X 9 with (x1y) e x(K)
le T

such that z i- Minui(xl-I)+u i (NeW.
jeT

forallie Tand zk - Min uJ(X I-+u k (x)*0.
jeT

for at least one k e T }.

First we need to show that A is a convex set. Accordingly, let {, : i } and {i iE }

lie in A. That is, there exist y and in XS' with
leT

10



(XIY ) E X (K) and (XtyE X (K) such that

k'- Minuj(X 1)+U'nX EW for al eT
i*T

Mmk uj(- )+ U.i' Minu xX for some k, c- T
jeT

and

zMinu'(xly) +u'(x) r=W foral i r T
jET

zMin u(x) +ut()e orsome k, E T
jeT

For anyO0< < I we then obtain

z+ (I- ) '[XMin ul(i I y)+ (-)Min u (x- )+ u n) e W for all i e T.

Since rT is a (T-W-K) -quasiconcave game we have

Min (u (~il) u' (-XI9)) -ui[X@IX ) +(I) Y) W

Let u= Minu(I). '(y)

Li MinUi(RI)P)
geT

=k Mi ('i1q)

Hence

x P' +(kx~) X(uCO iU0 + (k~j (PCtJJ)]

-uX('iJl +(-X) (x-I")] + uix c- W for afliE T

y 11



and therefore by Assumption (A),

By Lemma 2.1 we have

that is,

to '

X O' IET) + (1-)-X) (Z : i ET11 e A

Hence A is a convex set.

Clearly, 0 i A, so by the convex separation theorem there exist pi, i E T, not

all zero, such that

I plz Oforal (z:ieT A

iET

For any YE X S with (- I y) E X(K), we c W, i E T, not all zero, and X > 0, setic T
i 

e T i

=iu' (iiy) - u'nx+ xw'

Then

{zi iET} r A and

;pu (X I Y) -i P'u nx + P' < o

Hence Pi E W*, i e T.

Letting X -- 0+, we then have

iET i T

12



for all yz X Si with rxly)eX(K)
iET

Q.ED.

The following lemma, whose proof parallels that of Lemma 3.1, is also
useful in more general contexts.

Lemma 3.2: Let r be a (T-W-K) --concave game and W be acute. If i E X (K) is a
T-nondominated efficient solution of r' associated with W, then there exist Pi E W*, i E T,

not all zero, such that

P, u'' n -,_PtU u(x IY)

iET WET

for all y( X s' with xIy) e X (K)
isT

Now for fixed i e X (K) let

DT('- {YEXS:(IY)EX(K)}

Theorem 3.3: Let i e X (K) . If there exists {pi ie T} with Pi G W* such

that

P pu(n)!X, Rpuiy) for all YE X S with Vy ) c X (K)
w=T ieT ie T

then

ri t[,P'VTUi ')]t rT" (DTX),iXT)

Proof: For any h e T (DT , XT) , we need to show only that

(P I VTU'n) h !50.

13



Thus, let {yk} c DT n with km yk XT, and Xk> 0 with kliM Xk = 0 such that

h = r .k(yk -xl
k---+ Go

Since p U'(-X yk) XpU n) + 1:ptVTU nX (yk-LXT) + 0jK
ET ieT lET

And ,p.u'(ijy' o s pun(
lET iET

we have

P TU' X (Y'-Xr X 0yLTII
gET

and therefore

, PiVTU('nx)Lk(y -XT) +)Lk.0(1yk--iT) < 0.
ET

Letting k-+ -, we then obtain

(,zP" VTUi n)h :50.

Q.E.D.

Assuming " E X (K) let

CT(' ={ (VTG( )tY: ye -K*withYt( ,= 0}

Lemma 3.3:(21 Let x e X (K) and G (x) be Frechet differentiable at -x with

respect to {x i :ie T}. Then

T (DT{ R 1 C (-C 4(X)

14



By Lemma 2.1: T °(DT(ix, Xr) 4(-CTIX . In the general case, CT (') is not a closed

set, but if we let K = E+m and T = N, then we have

where i = { ;:gi) =o, 1<i!5 m)

We know that CT nX is a closed set (a simple proof is given in [6] ). Thus we

can make the following definition.

Definition 3.1: A point X E X (K) is said to be a "T-regular point" of the

constraint set X (K) if T*(DT , X) c(-CT())•

Theorem 3.4: Let r be a (T-W-K) -quasiconcave game and W D E. be acute. If
X E X (K) is a T-nondominated efficient solution of r associated with W and a T-regular

point of X (K), and Assumption (A) holds, then there exist pi e W*. ie T, not all zero,

and YE (-K*) such that

X_ pV u(X + t VT G(x =0
iC T

Proof: By Lemma 3.1 there exist Pi e W*, i e T, not all zero, such that

ptU (y) > p, u(xIy) for all ye X Si with
ieT iET iE T

(X ly) E X (K)

By Theorem 3.3 we have

TpVT u-] E T* (DT X, X,

15



Since _ is a T-regular point, we know that

I PV U'x tE (-CT ()

Then there exists y E (-K*) with t G (i) = 0 such that

it t

P lT UJ xGI
that is,

t U

XPi VTU (nX + YV T G( =0
iET

'G( =0

Q.E.D.
Evidently by Lemma 3.2, Theorem 3.4 also holds if r is a (T-W-K) -.concave

game with any acute W and we do not need that Assumption (A) holds.

The following two useful theorems can be derived now directly from Theorem 3.2
and Theorem 3.4.

Theorem 3.5: For all subsets T consisting of a single element, let r be a

(T-W-K) -concave game with W acute. If i ( X(K) satisfies (3.1) and (3.2) then i

is a non-dominated equilibrium point of r associated with W.

Theorem 3.6: For all subsets T consisting of a single element, let r be a

(T-W-K) -quasiconcave game with acute W D EL. If - E X (K) is a nondominated

equilibrium point of r associated with W and a T-regular point, and Assumption (A)
holds, then for any fixed T consisting of one element, there exists nonzero p C W" and
y e (-K*) such that

ptVTUinX +YVTG x= 0 ,forie T

Y"Gn() =0

16



If we use that r is a (T-W-K) --concave game, then the result is also true without the

Assumption (A).

4. An Illustrative Example

We now turn to the example given by Harker [5], the two-person game depicted
in Figure 1. Each player chooses a number xi between 0 and 10 such that the sum of
these numbers is less than or equal to 15. Harker's utility, functions and constraint
function are defined in our terms by:

2 8ul(xi,xA. 34x,-xl- Y-x1x2

2 2 5
u (xxA= 24.25x 2-x 2 - -Zxx 2
g(Xl,X = 15-X,-X 2 .

Here, W = E, K = E , S'=(xl: 0<- x,<_ 10),

2
S = {x 2 :0:-x 2

< 10), and

X(K) (x,,x2) : XsE S X 2,g(xx)- 0).

Since g (xi, x2) is linear, for all subsets T consisting of a single element and any

(Xl x2) e X (K) , (X1 x2) is a T-regular point. Further, it is easy to show that if T

consists of one element, r (X (K), W; u', u 2) is a (T-W-K) -concave game

(otherwise it is quasi-concave). Hence, by Theorems 3.5 and 3.6, the nondominated
equilibrium points of F are points which satisfy (3.1) and (3.2), and vice-versa.

From (3.1) and (3.2), we need to find points (Xl, x2) in X (K) that satisfy

the following equations:

34-2x1 - -X2- 1 = 0
3 0(4.1)

5
24.25-2x 2 - . X1 -' 2 = 07(4.2)

17



Y' (15-x- = 0 (4.3)

y2 (15-x,--x 0 (4.4)

^1 , Y2' - 0.

If x1 + X2 < 15, then by (4.3) and (4.4), we must have i = ?= 0. (4.1) and

(4.2) then reduce to

34-2x,- 8 x 2 = 0
3

24.25-2x 2- §- x, = 0
4

with solution ( X1 ,X 2 ) = (5, 9).

If x1 + x2 = 15, we may substitute 15 - xi for x2 in (4.1) and (4.2), and

using T1, y2 - 0 we obtain xl 9 and xl a 23/3. Since xj 2! 9 implies x1 2! 23/3, the

interval [(9,6), (10,5)] satisfies (4.1) through (4.4).

Therefore, by Theorems 3.5 and 3.6, the set of non-dominated equilibrium

points of r (Nash equilibrium points in this case) is comprised of the point (5, 9) and the interval

[(9, 6), (10, 5)] , as shown in Figure 1.

x 2

Solution Set

9

8
7.

6
5. X (K)
4

3

2.

0 1 2 3 4 5 6 7 8 9 10 15 x i

Figure 1
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As is well known (see [4]), Nash equilibria in general are not Pareto efficient

Solutions. We now show that none of the Nash equilibrium points in the above example
are Pareto-efficient and then proceed to determine the locus of Pareto-efficient points.

Take T - N - {1, 2}. Since

V2UU, _ 8 and V2U2=4 51)

are neither positive semi-definite nor negative semi-definite matrices, u1 and u2 are

neither convex nor concave functions.

We first show that u1 and u2 are quasiconcave on s' x S2 . Note that u' (Xl , x2 )

>00nS 1 x S2 for i = 1,2. Hence:

So (XI,X4 E S1xX S2:U1(XiX

and

S 2 (x X4 E S 1 2: UX 1 , X4 ' a

are convex sets for all a 5 0.

For all a > 0 we have

I {S j S'X 2:,IXxl >a}

{X 1,x X  :2s <3 ( )4-}
- :~xS X2 _- (34-x-

8 Xl

and
2 S $2 u2

SU S, x S * (1XS: (xx4I_

fx s : : (24.25-x- )

1X 2
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1 2

Clearly, S ' and S2 are convex sets, so by Lemma 2.3 ul and u2 are quasiconcave
1 2

on SxS 2

Then by Theorem 3.4, if (Xl, X2) 6 X (K) is a Pareto -efficient solution then there

exist (X1 , X2) 0 with (X , X2 ) (0, 0) and y> 0 such that

.IVT U1  (X,,X 2 VT  U 2 (X , - VT g  (XI,X 0

yg(x1 ,x = 0,

that is

1 (34-2x,-§-x2) + X(2 (A.x2) -7 no (4.5)

X, (-. x1) + X2 (24.25-2 x 2 4xi) - (4.6)3

y(15-x,-x 2 ) 0 (4.7)

(i) For the point (xI, x2 ) - (5, 9), substitution in (4.5) - (4.7) leads to

%I - X2 - 0. Therefore, the point (5, 9) is not Pareto-efficient.

(ii) Consider the internal I - [ (9, 6) , (10, 5)1. Substituting 15 - xj for

x2 in (4.5) and (4.6) we obtain

7 5 5
-6X1 + -X'x 4 T- 2+ 4 "7 (4.8)

4 4- = (4.9)

from which we derive

= 36 - 20x 4.11

-3x1 - 78 (4.10)

If X 1 - O, then X2= 7 -0. If X2 .0, then for9 < Xl < 10 we also have

= = 0 . In neither case will any point in the interval I be Pareto-efficient.
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Substituting ior X2 from (4.10) in (4.8) we obtain

2
72 

= -23xi +350x,-207
3x,- 78 (4.11)

which is less than zero for any 9 :5 xl -< 10 and X1 > 0. Thus, no equilibrium point

in the interval I is Pareto-efficient.

The Pareto-efficient points for this example constitute in part the intersection of

the constraint set with the locus of points of tangency between the two players' contour

of constant utility. This is the "contract curve" in economics parlance; any departure
from this curve cannot improve the lot of both players and will leave at least one player

worse off. There are also other Pareto-efficient points stemming from the fact that the

sum of 2 quasi-concave functions need not be quasi-concave.
I2

The locus of points of tangency is given by V u + X V u2 0 for X 0.

SinceVul -(34-2x 1-8-x 2'-&x) andV U _(-5x 2,24.25-2X 2-5X1 ) wethen3 3 4 4
have

34- 2x,-X-'x2 x0

3 4 (4.12)

5 8
24.25X-2Xx2 - !",X1 -'X 1 ,,0 (4.13)

Eliminating X and collecting terms we obtain
2 2

4947-546x1 +15xl + 24xlx 2-796x 2+ 32x 2 = 0 (4.14)

Hence the set of Pareto-efficient points is given by

(x rS 1 xS 2 4947-546x,+15x+ 24xx 2 -796x2 (4.15)

2
+32x 2 - 0,xI+x 2

< 15 U{(x 1 ,x :O5x<0.63, x2-10}

U{(xIx) : xi,- 10, 0 5 x 2 2}
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Figure 2 depicts (part of) two representative contours of constant utility for
each player: (u1 , u2 ) = (41, 91), with point of tangency (x1 , x2 ) = (3, 6.5), and
(u1 , u2 ) . (77.88, 65.27) with point of tangency (x1 , x2 ) = (5, 5.03), to two
decimal places. The locus of non-dominated (Pareto) efficient solutions extends from
(x1 , x2 ) = (0, 10), to (x1 , x2 ) = (10 , 0), with corresponding utility values
ranging from (u1 , u2 ) = (0, 142.5) to (u1 , u2 ) = (240, 0).

The non-dominated equilibrium point (x1 , x2 ) = (5, 9) corresponds to utility
values (u1 , u2 ) - (25, 81), while the interval [ (9, 6), (10, 5) ] corresponds to the

utility interval [(81, 42), (106.67, 33.75) ].

5. Concluding Remarks

We have presented a new concept of "T-non-dominated efficiency" for multi-
payoff n-person games with interacting strategy sets. Our notion of T-non-dominated

efficient solutions subsumes generalizations of both non-dominated equilibrium points
and non-dominated efficient solutions, and thus covers the spectrum from
generalizations of Nash equilibria to generalizations of Pareto efficiency or optimality
for intersecting or cross-constrained strategy sets.

Several theorems have presented essential properties of T-non-dominated

solutions and non-dominated equilibrium points, and we have illustrated their
application by means of a two-player examp!e in which only one generalized Nash
equilibrium point can be found by variational inequality methods. In contrast, our new
solution concept and theory enables us to determine easily all the generalized Nash

equilibrium points for this example, none of which is Pareto efficient, as well as the

locus of Pareto-efficient solutions.

Because of non-uniqueness of the generalized Nash eqL:Iibrium points any one
chosen is not automatically the "best" from the point of view of the competing parties or
"society". Morecer, Nash equilibria in general are not Pareto efficient, and hence will
not necessarily be optimal or desirable from the point of view of society. For many

purposes in economics Pareto-efficient solutions are needed.
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(0.63, 10)
10-

9 u =41
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For example, while seeking to preserve competition, the overall good of both
consumers and suppliers requires a balance or regulation of competition which amounts
effectively to a cooperation imposed by the regulatory agency. Pareto-efficient solutions
thus embody notions of *collective* or "societal" stability, In which no improvement can
be provided to all parties simultaneously and in which a departure by any party from a
Pareto-efficient solution necessarily results in some other party becoming worse off.

If (generalized) Nash equilibria are indeed the result of (unregulated)
competitive action, and such equilibrium solutions do not intersect with Pareto-efficient
or other society-desired solutions, can regulation achieve this intersection?

Or is it possible (and desirable) only to achieve a weaker T-nondominated
solution? Evidently our new notion provides the important existence/flexibility
evaluations of what is possible.
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